Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Res Microbiol ; 172(6): 103869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34333135

RESUMO

Due to the emergence of multidrug-resistant bacteria, bacteriophages have become a viable alternative in controlling bacterial growth or biofilm formation. Biofilm is formed by extracellular polymeric substances (EPS) and is one of the factors responsible for increasing bacterial resistance. Bacteriophages have been studied as a bacterial control agent by use of phage enzymes or due to their bactericidal activities. A specific phage against Serratia marcescens was isolated in this work and was evaluated its biological and genomic aspects. The object of this study was UFV01, a bacteriophage belonging to the Podoviridae family, genus Teseptimavirus (group of lytic viruses), specific to the species S. marcescens, which may be related to several amino acid substitutions in the virus tail fibers. Despite this high specificity, the phage reduced the biofilm formation of several Escherichia coli strains without infecting them. UFV01 presents a relationship with phages of the genus Teseptimavirus, although it does not infect any of the E. coli strains evaluated, as these others do. All the characteristics make the phage an interesting alternative in biofilm control in hospital environments since small breaks in the biofilm matrix can lead to a complete collapse.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Podoviridae/fisiologia , Serratia liquefaciens/crescimento & desenvolvimento , Serratia marcescens/crescimento & desenvolvimento , Serratia marcescens/virologia , Substituição de Aminoácidos , Genoma Viral , Especificidade de Hospedeiro , Concentração de Íons de Hidrogênio , Interações Microbianas , Podoviridae/classificação , Podoviridae/genética , Podoviridae/isolamento & purificação , Domínios Proteicos , Temperatura , Proteínas da Cauda Viral/química , Latência Viral
2.
PLoS One ; 14(8): e0220804, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390381

RESUMO

Many efforts have been made to understand the pathogenesis of bovine mastitis to reduce losses and promote animal welfare. Staphylococcus aureus may cause bovine clinical mastitis, but it is mainly associated with subclinical infection, which is usually persistent and can easily reoccur. Here, we conducted a comparative genomic analysis between strains of S. aureus causing subclinical infection (Sau170, 302, 1269, 1364), previously sequenced by our group, and two well-characterized strains causing clinical mastitis (N305 and RF122) to find differences that could be linked to mastitis outcome. A total of 146 virulence-associated genes were compared and no appreciable differences were found between the bacteria. However, several nonsynonymous single nucleotide polymorphisms (SNPs) were identified in genes present in the subclinical strains when compared to RF122 and N305, especially in genes encoding host immune evasion and surface proteins. The secreted and surface proteins predicted by in silico tools were compared through multidimensional scaling analysis (MDS), revealing a high degree of similarity among the strains. The comparison of orthologous genes by OrthoMCL identified a membrane transporter and a lipoprotein as exclusive of bacteria belonging to the subclinical and clinical groups, respectively. No hit was found in RF122 and N305 for the membrane transporter using BLAST algorithm. For the lipoprotein, sequences of Sau170, 302, 1269, and 1364 with identities between 68-73% were found in the MDS dataset. A conserved region found only in the lipoprotein genes of RF122 and N305 was used for primer design. Although the polymerase chain reaction (PCR) on field isolates of S. aureus did not validate the findings for the transporter, the lipoprotein was able to separate the clinical from the subclinical isolates. These results show that sequence variation among bovine S. aureus, and not only the presence/absence of virulence factors, is an important aspect to consider when comparing isolates causing different mastitis outcomes.


Assuntos
Genômica , Mastite Bovina/microbiologia , Staphylococcus aureus/genética , Animais , Bovinos , DNA Bacteriano/genética , Feminino , Genoma Bacteriano , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Polimorfismo de Nucleotídeo Único , Infecções Estafilocócicas/microbiologia , Virulência/genética
5.
J Dairy Sci ; 99(10): 7842-7851, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27497896

RESUMO

This work discusses the biological and biochemical characterization of an extracellular protease produced by Pseudomonas fluorescens. The enzyme has a molecular weight of 49.486 kDa and hydrolyzes gelatin, casein, and azocasein, but not BSA. Its maximum activity is found at 37°C and pH 7.5, but it retained almost 70% activity at pH 10.0. It was shown to be a metalloprotease inhibited by Cu(2+), Ni(2+), Zn(2+), Hg(2+), Fe(2+), and Mg(2+), but induced by Mn(2+). After incubation at 100°C for 5min, the enzyme presented over 40% activity, but only 14 to 30% when submitted to milder heat treatments. This behavior may cause significant problems under conditions commonly used for the processing and storage of milk and dairy products, particularly UHT milk. A specific peptide sequenced by mass spectrometer analysis allowed the identification of gene that encodes this extracellular protease in the genome of Pseudomonas fluorescens 07A strain. The enzyme has 477 AA and highly conserved Ca(2+)- and Zn(2+)-binding domains, indicating that Ca(2+), the main ion in milk, is also a cofactor. This work contributes to the understanding of the biochemical aspects of enzyme activity and associates them with its sequence and structure. These findings are essential for the full understanding and control of these enzymes and the technological problems they cause in the dairy industry.


Assuntos
Endopeptidases/metabolismo , Temperatura Alta , Pseudomonas fluorescens/enzimologia , Animais , Temperatura Baixa , Concentração de Íons de Hidrogênio , Leite , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...